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Abstract

Osmium tetroxide offers the beautiful example of a central particle, the osmium nucleus, with several possible spi
(1/2 for 187Os and 3/2 for 189Os), interacting with the very symmetric and well-defined electromagnetic environment c
by a tetrahedron of spinless oxygen nuclei. Among other nuclear hyperfine interactions, the magnetic field generat
vibrations of these oxygen nuclei orientates this central spin. To study specifically this spin-vibration interaction, the m
dipole contributions to the hyperfine structures observed in theν3 band of189OsO4 and187OsO4 have been analyzed in deta
Besides the spin-rotation constants already deduced in a previous paper, we have obtained the spin-vibration constanA, and a
small change of the spin-rotation constantδca in the upper vibrational level. We have verified the speculated relationA = ζ3ca

at the 1% level (ζ3 is the Coriolis coupling constant, which multiplies the internal vibrational angular momentum to turn
into a physical angular momentum comparable to the pure rotation angular momentum). Starting from first principles,
rederived the expressions of the magnetic dipole constants for any semi-rigid polyatomic molecule. When these ar
to OsO4, they justify the previous approximate relationship betweenA andca and give values for the correction terms whi
account for the 1% difference.To cite this article: C. Chardonnet et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’interaction hyperfine spin-vibration dans la bande ν3 de 189OsO4 et de 187OsO4 : un exemple calculable en
spectroscopie moléculaire à haute résolution.Le tétroxyde d’ osmium nous offre le bel exemple d’une molécule pour laq
la particule centrale, le noyau d’osmium, dont le spin peut prendre plusieurs valeurs (1/2 pour 187Os et 3/2 pour 189Os),
interagit avec l’environnement électromagnétique très symétrique et très bien défini, créé par un tétraèdre de noyaux
sans spin. Parmi d’autres interactions hyperfines nucléaires, le champ magnétique engendré par le mouvement d
de ces noyaux d’oxygène contribue à orienter le spin central. Pour étudier spécifiquement cette interaction spin-
les contributions dipolaires magnétiques aux structures hyperfines observées dans la bande de vibrationν3 de 189OsO4 et
187OsO4 ont été analysées en détail. En plus des constantes de spin-rotationca , déjà déduites dans un article antérieur, n
avons obtenu pour chaque espèce isotopique la constante de spin-vibration,A, et la valeur d’une petite variationδca de la
constante de spin-rotation dans l’état vibrationnel supérieur. Nous avons vérifié la relation conjecturéeA = ζ3ca au niveau de
1 % (ζ3 est la constante de couplage de Coriolis, qui multiplie le moment angulaire vibrationnel interne pour en faire un mome
angulaire physique comparable au moment angulaire de rotation pure). En partant des premiers principes, nous avon
les expressions des constantes dipolaires magnétiques pour toute molécule polyatomique semi-rigide. Quand ces e

* Corresponding authors.
E-mail addresses:chardonnet@lpl.univ-paris13.fr (C. Chardonnet), chbo@ccr.jussieu.fr (C.J. Bordé).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.01.020
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sont appliquées à la molécule OsO4, elles justifient la relation approchée qui précède entreA et ca et fournissent des valeur
pour les termes de correction qui rendent compte de la différence de 1 %.Pour citer cet article : C. Chardonnet et al., C. R.
Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Thanks to non-linear spectroscopic methods (saturation spectroscopy) invented 35 years ago [1], ultra-high r
molecular spectroscopy is now currently performed with a linewidth of about 1 kHz. This corresponds to a resolving
≈ 3 × 1010 in the 8–12 µm spectral region, in which our spectrometer operates in Villetaneuse [2–4]. This resolution
perfectly well-adapted to the observation of the magnetic hyperfine interactions in the rovibrational spectrum of most m
Although these interactions are very tiny, they constitute a sensitive probe of the internal dynamics of the molecule. The
resolution and the accuracy achieved in the measurement of these interactions open the possibility of a stringent co
between experiment and theory. This paper follows two earlier ones which present the experimental observations of
structures in187OsO4 and189OsO4 and the analysis of these interactions. This third paper demonstrates a remarkable ag
between a simple theoretical model and our experimental observations.

In a first paper [5], referred to as paper I, we have presented a general introduction to the hyperfine problem in theν3 band
of 189OsO4 and 187OsO4. The relationships between the experimental splittings and the hyperfine constants (spin-rotati
spin-vibration and quadrupolar coupling constants in both rovibrational levels) have been established. The obser
crossover resonances in saturated absorption gave rise to an independent determination of the hyperfine consta
vibrational level. As an illustration, we have derived the spin-rotation constants and obtained189ca = −21.6891(33) kHz and
187ca = −6.379(20) kHz.

In a second paper [6], referred to as paper II, we have focused our attention on the electric quadrupole interaction in189OsO4.
Although, by symmetry, this molecule should not present any quadrupolar structure if it behaved as a rigid rotor, we we
observe two main contributions, due to the centrifugal distortion and to the vibration and also a weaker one, due to the
forces. In order to describe correctly the observed structures, we have developed a systematic method for the pe
treatment of the quadrupolar problem, valid for any semi-rigid molecule. Then, the Hamiltonian was symmetrized using t
algebra of the symmetry group of the molecule,(L)O(3) × Td in order to calculate the matrix elements. The whole proced
enabled us to establish a connection between the quadrupolar constants which are deduced from experiment, an
molecular constants, some of which are already known from other spectroscopic works, some others are unknown
set of force constants which depend on the shape of the molecular potential. Unfortunately, the number of unknown m
constants involved in the description of the ‘experimental’ quadrupolar constants was too high and prevented us
stringent test of the validity of our description of the quadrupolar problem.

In the present paper, we follow the same general idea with the magnetic dipolar problem in189OsO4 and 187OsO4. In
Section 2, we derive the magnetic dipole constants in the upper vibrational state from the experimental data since gro
spin-rotation constants were already obtained in paper I. In Section 3, starting from first principles, we recall the ex
of the magnetic dipolar Hamiltonian. We obtain it by quantization of the classical Hamiltonian which can be derived
particle in classical electrodynamics. Then, we obtain the magnetic dipole Hamiltonian for anysemi-rigid molecule and we
express the magnetic constants in terms of elementary molecular constants. Some simplifications of the Hamiltonian
physical considerations enable us to reduce the number of unknown terms in these expressions and a real comparis
the experimental constants and the values deduced from the theoretical calculations is possible by contrast with the qu
problem. In Section 4, we apply this study to the case of theν3 band of189OsO4 and187OsO4. For both molecules, we obtai
a relationA = ζ3ca + w, wherew is completely calculable except for the unknown sign of a parameter which distingu
between the two F2 modes of vibration,ν3 andν4. It is remarkable that the experiment lifts this ambiguity in favor of the m
which is much more likely to be the high frequency modeν3.

2. Determination of the magnetic dipole constants in the upper vibrational level of189OsO4 and 187OsO4

We have shown in paper I that the hyperfine structures in theν3 band of187Os16O4 and of189Os16O4 appear respectivel
as two and four main lines identified byX = F − J = F ′ − J ′ whereF = J + I is the total angular momentum,J , F andJ ′, F ′
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Fig. 1. Spectrum of the P(65)A2−3
1 (+) line of 187OsO4, located at−15.260 MHz from the P(18) laser line of the natural CO2. The half-width

at half-maximum (HWHM) is 2.77 kHz. The magnetic doublet associated to the spin 1/2 of 187Os is apparent. The rovibrational identification
has required mixing of two states due to tensorial interactions. This has no influence on the hyperfine interactions which are essentially sca
The natural mixture of OsO4 used here contains 1.64% of187OsO4. 2sec/point. Uncertainty of the splitting: 50 Hz.

Fig. 2. Spectrum of the R(67)A0
1(−) line of 187OsO4, located at−1.846 MHz from the R(22) laser line of the natural CO2. HWHM = 1.88 kHz.

The better signal-to-noise ratio is due to the enriched (at 99%) sample of187OsO4. 1 sec/point. Uncertainty of the splitting: 13 Hz.

are the quantum numbers in the ground and upper vibrational states, respectively. The spin of187Os isI = 1/2 and, for189Os,
I = 3/2. We will keep consistent notations with those introducedin Section III.1 of paper I. The transition frequency of t
line identified byX is noted�E(X). Figs. 1–4 give a few examples of hyperfine structures of these two isotopic spec
the case of189OsO4, the precision on the relative intensities of the hyperfine components, which are mainly proportional to
Zeeman degeneracy, 2F + 1, was high enough to enable a direct identification of each of these. Eqs. (10) and (11a) of p
valid respectively for187OsO4 and for189OsO4, can be re-written in the form:
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Fig. 3. Spectrum of the P(70)A4
1(−) line of 189OsO4, located at+149.262 MHz from the P(20) laser line of the natural CO2.

HWHM = 2.33 kHz. The natural mixture of OsO4 used here contains 16.1% of189OsO4. 1 sec/point. Uncertainties of the splittings: from 1
to 20 Hz.

Fig. 4. Spectrum of the R(64)A1
1(−) line of 189OsO4, located at−146.017 MHz from the R(20) laser line of the natural CO2.

HWHM = 3.05 kHz. Natural mixture of OsO4. 1 sec/point. Uncertainty of the splittings: 19 Hz.
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Table 1
List of experimental values for�ca : case of187OsO4

187OsO4

Line label �ca (Hz)

P(65)A2−3
1 (+) −6.87(86)

P(58)A1
1(+) −8.40(57)

P(38)A2
1(−) −15.23(61)

R(30)A1
1(+) 30.73(67)

R(30)A1
1(−) 30.67(81)

R(49)A2
1(−) 20.95(57)

R(49)A2
1(+) 20.87(56)

R(55)A0
1(+) 17.82(81)

R(67)A0
1(−) 13.93(35)

R(74)A0
1(+) 15.7(13)

R(74)A0
1(−) 17.3(15)

R(80)A1
1(+) 14.38(79)

R(80)A1
1(−) 15.99(81)

Table 2
List of experimental values for�ca : case of189OsO4

189OsO4

Line label �ca (Hz)

P(70)A4
1(−) −25.52(18)

P(63)A1
1(−) −31.59(25)

P(56)A2
1(+) −31.91(23)

P(49)A3
1(−) −34.94(21)

P(49)A3
1(+) −34.71(21)

R(26)A0
1(+) 121.88(66)

R(26)A0
1(−) 121.66(61)

R(45)A0
1(−) 77.65(29)

R(57)A0
1(+)(a)? 67.90(48)

R(57)A0
1(+)(b)? 68.47(47)

R(64)A1
1(+) 62.29(22)

R(64)A1
1(−) 62.02(21)

R(64)A2
1(+) 61.46(20)

R(76)A4
1(+) 53.78(38)

where�ca is given by:

�ca = δca − A
�J(J + J ′ + 1) + 2

2J ′(J ′ + 1)
= δca + AQ(J,J ′). (3)

The left-hand sides of Eqs. (1) and (2) involve splittings between hyperfine components which are measured experimentally
Since the spin-rotation constants189ca and187ca have been already determined, we obtain experimental data for�ca , which are
reported in Tables 1 and 2, corresponding to the two isotopic species. Eq. (3) gives the basis of a linear fit to determin
hyperfine constantsδca andA for each isotopic species. The results of these linear fits are displayed in Figs. 5 and 6. We
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stant
Fig. 5. Linear regression using Eqs. (1) and (3) for the determination of the spin-vibration constant and the change of the spin-rotation con
between thev3 = 0 and thev3 = 1 state in the case of187OsO4. The error bars are the experimental uncertainties.

Fig. 6. linear regression as for Fig. 1, using Eqs. (2) and (3) in the case of189OsO4.

for 187OsO4,{
δca = 5.13(36) Hz, (4a)

A = −781(27) Hz; (4b)

for 189OsO4,{
δca = 18.34(76) Hz, (5a)

A = −2799(36) Hz. (5b)

Let us recall the values of the Coriolis coupling constant,ζ3, for both isotopic species [7]:{
187ζ3 = 0.128165(19), (6a)
189ζ3 = 0.126927(14) (6b)

so that we can verify that:
for 187OsO4,

A

ζ3ca
= 0.955(35); (7)
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ζ3ca
= 1.017(13). (8)

This means thatAR = ζ3ca , which multiplies the rotational part of the spin-vibration interaction, represents the
important contribution to the spin-vibration constant. The remainder of this paper is devoted to the analysis of these h
constants in order to give a physical explanation of such a remarkable relation.

3. Magnetic dipole Hamiltonian from first principles

The purpose of this part is to recall the physical origin of the magnetic dipole Hamiltonian in molecules. For this purpose
we start with a classical approach and derive a simplified classical Hamiltonian for molecules, which is then quantiz
reader will find more general derivations of a full molecular Hamiltonian in the literature [8,9].

3.1. Derivation of the spin-orbit Hamiltonian

We consider a particle of spins and of magnetic momentµ parallel tos. In its proper frame, the particle probes a magne
field, B, and the classical non-relativistic Hamiltonian is:

Hnon-rel. = −µ · B. (9)

There is an axial 4-vector,S, which reduces toS = (0,s) in the proper frame of the particle (Thomas–Pauli–Lubanski
the particle moves at a velocityv in the laboratory frame, the relativistic Hamiltonian can be written as [10]:

Hrel. = − 1

γ
µ · B′ + ωT · s, (10)

whereγ = (1 − v2/c2)−1/2, B′ is the magnetic field in the proper frame of the particle andωT is the Thomas precessio
vector,ωT = −(γ 2/(γ + 1))(1/(c2))v × dv/dt . The first term is the interaction energy between the dipole and the mag
field, the factor 1/γ is the time dilatation factor in the laboratory frame. The second term has a purely kinematic origin a
consequence of the fact that the product of two Lorentz transformations is equivalent to a Lorentz transformation and
rotation when the velocity changes its direction.

Let us suppose that the particle has a chargeq and is submitted to the Lorentz force created by an electric fieldE and a
magnetic fieldB; one can show that Eq. (10) takes the following form:

Hrel. = −µ ·
[(

1− qs

mµ

γ − 1

γ

)
B − γ

γ + 1

(
1− qs

mµ

)
v
c

· B
v
c

−
(

1− γ

γ + 1

qs

mµ

)
v × E

c2

]
. (11)

This expression is valid whatever the values ofv, B andE. If we assume that the particle is in interaction with the molec
fields and thatv � c, this Hamiltonian takes a simplified expression:

Hrel. = −µ ·
[
B −

(
1− q

2m

s

µ

)
v × E

c2

]
= −µ ·

[
B − γi

v × E

c2

]
. (12)

The Thomas precession appears only as a correction factor,γi , characteristic to the particlei, in front of the motional
magnetic field that we will noteγe for the electron andγN for a nucleus N. Expressed in terms of the gyromagnetic factog

andgN , and the atomic chargeZN , the mass of the nucleus and the proton,mN andmp :

γe = 1− 1

g
≈ 1

2
, (13a)

γN = 1− ZNmp

gNmN
. (13b)

In particular, we haveγ189Os= 0.072 andγ187Os= −2.2. B andE are the molecular fields created by the electrons and
nuclei of the molecule:

E(r) =
∑
α

Eα =
∑
α

qα

4πε0

r − rα

|r − rα |3 , (14a)

B(r) =
∑

Bα =
∑ 1

c2
vα × Eα + µ0

4π

(
3µα · (r − rα)

|r − rα |5 (r − rα) − µα

|r − rα|3 + 8π

3
µαδ(r − rα)

)
. (14b)
α α
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We can now write a spin-orbit Hamiltonian:

HS.O. = µ0e

4π

∑
i,j
i �=j

µi ·
[
(vj − γevi ) × r i − rj

|r i − rj |3
]

− µ0e

4π

∑
i,K

µi ·
[
(vK − γevi ) × ZK(r i − rK)

|r i − rK |3
]

+ µ0e

4π

∑
N,j

µN ·
[
(vj − γNvN) × rN − rj

|rN − rj |3
]

− µ0e

4π

∑
N,K
N �=K

µN ·
[
(vK − γNvN ) × ZK(rN − rK)

|rN − rK |3
]
, (15)

where the indicesi and j refer to the electrons and the indicesN andK to the nuclei N and K. This Hamiltonian can b
quantized and symmetrized:

HS.O. = µ0e

4π

{
− gµB

∑
i,j
i �=j

si ·
[(

Πj

me
− γe

Πi

me

)
× Rij

R3
ij

]
+ gµB

∑
i,K

si ·
[(

ΠK

mK
− γe

Πi

me

)
× ZKRiK

R3
iK

]

+ µn

∑
N,j

gN IN ·
[(

Πj

me
− γN

ΠN

mN

)
× RNj

R3
Nj

]

− µn

∑
N,K
N �=K

gN IN ·
[(

ΠK

mK
− γN

ΠN

mN

)
× ZKRNK

R3
NK

]}
symm

. (16)

We have introduced the operatorssi , IN ,1 Rα , Πα for the electronic spins, the nuclear spins, the position-vector(Rαβ =
Rα − Rβ) and the canonical momentum in the laboratory frame for the particleα. This last operator is related to the usu
momentum of the particle by the relationΠα = Pα − qαAα(Rα) whereAα(Rα) is the potential-vector created by the oth
particles (electrons+ nuclei) at the position of the particleα. Now, in order to be able to calculate the various contributi
of this Hamiltonian, we need to introduce the relevant coordinates expressed in the molecular frame. Since the pro
canonical, we shall just give the result. The Hamiltonian splits into two parts, the nuclear spin-orbit and the electronic spin-orbit
terms:

Hn
S.O. = µ0e

4π

{
− µn

∑
N,K
N �=K

gN IN · I ′′1/2
[[( �
Kλ√

mK
− γN

�
Nλ√
mN

)
Pλ

− (
r0
K − γN r0

N

) × (
I ′′−1 · N

)] × ZK rNK

r3
NK

]
I ′′−1/2

+ µn

∑
N,j

gN IN · I ′′1/2
[[

pi

me
− γN

( �
Nλ√
mN

Pλ − r0
N × (

I ′′−1 · N
))]

× rNi

r3
Ni

]
I ′′−1/2

}
symm

, (17a)

He
S.O. = µ0e

4π

{
−gµB

∑
i,j
i �=j

si ·
[(

pj

me
− γe

pi

me

)
× r ij

r3
ij

]

+ gµB

∑
i,K

si · I ′′1/2
[( �
Kλ√

mK
Pλ − r0

K × (
I ′′−1 · N

) − γe
pi

me

)
× ZK r iK

r3
iK

]
I ′′−1/2

}
symm

. (17b)

λ corresponds to a normal vibrational mode and a sum over this index is assumed. Most of the new quantities introduced here
correspond to standard notations.I ′′±1/2 involves the determinant of the matrixI ′′ and comes from the Jacobian related to
change of variables. It does not commute withPλ. The Hamiltonian involving the electronic spins cancels to first order w
the total electronic spin is zero. Since we are only interested in the hyperfine terms we shall consider only the nuclear
Hamiltonian which can be rewritten as a sum of 5 terms:

Hn
S.O. = Hn

SR+ He
SR+ Hn

SV + He
SV + Hnd

S.O. (18)

with the following expressions:

1 Note that, for example,µN = gNµnIN implies that, as for the other spins,IN is dimensionless and expressed in units ofh̄.
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Hn
SR= µ0e

4π

{
µn

∑
N,K
N �=K

gN IN · I ′′1/2
[[(

r0
K − γN r0

N

) × (
I ′′−1 · (J − G)h̄

)] × ZK rNK

r3
NK

]
I ′′−1/2

}
symm

, (19)

He
SR= µ0µne

4π

{∑
i,N

gN IN · I ′′1/2
[[

γN r0
N × (

I ′′−1 · (J − G)h̄
)] × rNi

r3
Ni

]
I ′′−1/2

}
symm

, (20)

Hn
SV = −µ0µne

4π

{ ∑
N,K
N �=K

gN IN · I ′′1/2
[[( �
Kλ√

mK
− γN

�
Nλ√
mN

)
Pλ

]
× ZK rNK

r3
NK

]
I ′′−1/2

}
symm

, (21)

He
SV = −µ0µne

4π

{∑
N,i

gN IN · I ′′1/2
[
γN

�
Nλ√
mN

Pλ × rNi

r3
Ni

]
I ′′−1/2

}
symm

, (22)

Hnd
S.O. = µ0µne

4π

{∑
i,N

gN IN · pi × rNi

mer
3
Ni

−
∑
N,K
N �=K

gN IN ·
[[(

r0
K − γN r0

N

) × (
I ′′−1 · L

)] × ZK rNK

r3
NK

]

−
∑
i,N

gN IN ·
[[

γN r0
N × (

I ′′−1 · L
)] × rNi

r3
Ni

]}
symm

. (23)

The four first terms of HnS.O.
will give a contribution to first order to the spin-rotation Hamiltonians (index SR) of nuc

(n) or electronic (e) origin and to the spin-vibration Hamiltonians (index SV). On can note thatI ′′−1 · (J − G)h̄ represents,2 in
a 1Σg electronic state, the operator associated with nuclear rotation. Finally, the last term gives a non-zero contribution
breaking the Born–Oppenheimer approximation. In order to obtain a contribution to the spin-rotation interaction, we
couple the term to an orbital term linear withJ − G. The only possible term is:

Hnd
orb = −1

2

(
(J − G) · µ · L + L · µ · (J − G)

)
h̄. (24)

It is noticeable that there is no other orbital term which can generate a second-order contribution to the spin-v
interaction except this one which depends onG. The second-order spin-rotation term is, thus, given by:

H(2)
SR= −µ0µne

4πme

{∑
N

gN IN · 〈0|L ′
N

|p〉〈p|L |0〉 · µ + 〈p|L ′
N

|0〉〈0|L |p〉 · µ
Vp − V0

(J − G)h̄

}
symm

(25)

whereL ′
N = ∑

i (rNi × pi )/r
3
Ni . This last term completes Eqs. (21)–(24) which will give the dominant contributions t

spin-rotation and spin-vibration interactions.

3.2. The spin-rotation tensor

The spin-rotation tensorNC is defined as:

HSR= −1

2

∑
N

h
(
IN · NC · (J − G) + (J − G) · NC · IN

) = −h

{∑
N

IN · NC · (J − G)

}
symm

. (26)

This tensor is a constant (expressed in Hz). It will be obtained by considering the nuclei at their equilibrium position
(19), (20) and (25). From Eqs. (19), (20), the spin-orbit Hamiltonian to first order can be written as:

H(1)
SR=

{
µ0µne

4πme

∑
N,K
N �=K

gN IN ·
[[

r0
K × ((

I0)−1 · (J − G)
)] × ZK r0

NK

r0
NK

3

]

− 1

c2
µn

∑
N

gN IN ·
[[

γN r0
N × ((

I0)−1 · (J − G)
)]

×
[ ∑

K
K �=N

ZKer0
NK

4πε0r0
NK

3
−

∑
i

〈
0

∣∣∣∣ er0
Ni

4πε0r0
Ni

3

∣∣∣∣0
〉]]}

symm
, (27)

2 J andG are dimensionless and expressed in units ofh̄.
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where the expression which appears in the last brackets has a simple physical meaning. It represents the Coulomb fiEN
Coul.

at the nucleusN created by the other particles of the molecule. The corresponding force,FN
Coul. = ZNeEN

Coul., applied on
this nucleus is responsible for its rotation as the molecule is considered as a rigid rotor. A classical picture is give
fundamental law of the dynamics:

FN
Coul. = mNω × (

ω × r0
N

)
,

whereω represents the angular velocity expressed by(I0)−1 · (J − G). Thus, it turns out that the corresponding term
the Hamiltonian can be interpreted as a higher-order term in(I0)−1 · (J − G) and can be neglected. This is confirmed
a simple calculation of order of magnitude: the ratio between the second and the first term of H1

SR is of the order of:

4πε0mNω2r3/(ZNZKe2). Sinceω ≈ J h̄/(Mr2), whereM is the molecular mass, realistic numerical applications give a
of ANJ2/(A2

mol.ZNZK) × 10−4 (AN andAmol. are the atomic masses ofN and the whole molecule, respectively) which
very small ifJ � 100, whatever the molecule is. Neglecting this term has two consequences: first, the Thomas preces
disappears, i.e., the acceleration of the nuclei due to the rotation induces a negligible spin precession compared to t
the magnetic field created by the moving charges in the molecule; second, the first-order spin-rotation Hamiltonian depend
only on the nuclear coordinates and is completely calculable. Thus, the expression of the spin-rotation tensor is given

NC = NCn + NCe, (28)

where the nuclear and electronic spin-rotation tensors are defined by:

NCn
αβ = µ0µne

4π
gN

∑
K, K �=N

ZK

(
r0
Kαr0

NKβ − r0
K · r0

NKδαβ

r0
NK

3

)
1

I0
ββ

, (29a)

NCe
αβ = µ0µne

4π
gN

∑
p, p �=0

〈0|L′0
Nα |p〉〈p|Lβ |0〉 + 〈0|Lβ |p〉〈p|L′0

Nα |0〉
Vp − V0

1

meI
0
ββ

, (29b)

where the superscript 0 inL′
Nα

indicates that the nucleusN is taken at its equilibrium position.

3.3. The spin-vibration tensor

The spin-vibration interaction comes from the coupling between the nuclear spins and the angular momentum in
the vibration. The general form of the associated Hamiltonian is:

HSV = 1

2

∑
N

IN ·
∑
λ

(NVλpλ + pλ
NVλ

)
. (30)

We develop this expression to second order inqλ andpλ:

HSV =
∑
N

IN ·
[∑

λ

Nvλpλ + 1

2

∑
λ

Nwλµ(qλpµ + pµqλ) + · · ·
]
. (31)

This Hamiltonian is actually the sum of HnSV and He
SV given by Eqs. (21) and (22) and it can be re-written as:

HSV = −µ0µne

4π

{ ∑
N,K
N �=K

gN IN ·
[
Pλ

�
Kλ√
mK

× ZK rNK

r3
NK

]

−
∑
N

γNgN IN ·
[
Pλ

�
Nλ√
mN

×
( ∑

K,K �=N

ZK rNK

r3
NK

−
〈
0

∣∣∣∣∑
i

rNi

r3
Ni

∣∣∣∣0
〉)]}

symm
. (32)

As in the case of the spin-rotation interaction, the second contribution involves terms proportional to the Coulomb force
on the nucleiN . These Coulomb forces are responsible for the rotation and the vibration of the nuclei. If we neglect the
here, which can only contribute to higher-order terms, we see that the Coulomb force derives from the molecular
which can be developed versus the normal coordinates:

V = V0 + 1

2

∑
λ

h̄�λq2
λ + hc

∑
λ,µ,ν

Kλµνqλqµqν + · · · , (33)
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where the vibrational pulsation�λ is introduced and is related to the ‘vibrational frequency’ – commonly expressed in c−1

and introduced in paper II – by�λ = 2πcωλ . Thus the force obtained at the first order inqλ is:

N F = −∇rN V = −
∑
λ

h̄�λqλ∇rN qλ = −
∑
λ

√
mNh̄�3

λ
�
Nλqλ (34)

and the new expression of the spin-vibration Hamiltonian is:

HSV = −µ0µne

4π

{ ∑
N,K
N �=K

gN IN ·
[√

h̄�λpλ

�
Kλ√
mK

× ZK rNK

r3
NK

]}
symm

+ h̄µn

ec2

∑
N

γN

ZN
gN IN ·

[∑
λ,µ

�2
λ

�
Nλ × �
Nµqλpµ

]
, (35)

where the conjugate momentumPλ has been replaced by the dimensionless onepλ defined by:Pλ = √
h̄�λpλ. A simple

development versus the normal coordinates leads to the expressions of the tensorsNvλ andNwλµ:

Nvλ = −µ0µngNe

4π

∑
K, K �=N

[√
h̄�λ

�
Kλ√
mK

× ZK r0
NK

r0
NK

3

]
, (36)

Nwλµ = h̄µ0µngNe

4π

∑
K, K �=N

ZK

r0
NK

3

[ �
Nλ√
mN

− �
Kλ√
mK

− 3

(( �
Nλ√
mN

− �
Kλ√
mK

)
· r0

NK

)
r0
NK

r0
NK

2

]
×

�
Kµ√
mK

+ h̄µnγNgN

ZNec2
�2

λ
�
Nλ × �
Nµ. (37)

In a given vibrational level, the contribution of the first term in Eq. (31) is zero since the operatorpλ is off-diagonal. The first
non-zero contribution comes from the second term whose physics is expressed by Eq. (37) of the tensorNwλµ . The first line
comes from the usual interaction between the molecular magnetic field and the nuclear spin while the second line r
the motional terms: it includes in particular the Thomas precession. It is easy to estimate the relative contribution
two terms as we did in the case of the spin-rotation interaction: the ratio is of the order of 4πε0

√
mNmK �2

λ r3/(ZNZKe2),
an expression very similar to that obtained in the case of the rotation except that the rotational frequency is replac
vibrational frequency. In the case of a vibration in the 10 µm region, one finds a ratio of the order of

√
ANAK/(ZNZK) which

is typically between 0.1 and 1. This means that the motional terms cannot be neglected when the vibration is conside

3.4. New definition of the spin-vibration tensor

Because the molecular rotation is better represented by the angular momentumJ − G, we have expressed the spin-rotati
Hamiltonian with this quantity which appears naturally. However, for an analysis of the hyperfine constants from experimen
data, it is preferable to assemble terms having the same signature. Thus, we introduce the spin-vibration-rotation Hamiltonian
with the following development:

HSVR = −
{∑

N

IN · NC · J
}

symm
+

∑
N

IN ·
[∑

λ

Nvλpλ

]
+

∑
N

IN ·
[∑

λ

NVλµ
1

2
(qλpµ + pµqλ)

]
+ · · · . (38)

This expression preserves the spin-rotation tensor as well as the tensorNvλ. We have to define a new spin-vibration tensor
the relation:

NVλµ = Nwλµ + NC · ζλµ (39)

and we will keep in mind that the second part of this tensor has a rotational origin.
This spin-vibration interaction has been introduced by Uehara and Shimoda [11] and first observed in the hyperfine

of SF6 in our laboratory [12].
The treatment presented here is applicable to any semi-rigid polyatomic molecule. We will now consider the specific c

of OsO4.
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4. Magnetic dipole constants in Os16O4

4.1. The spin-rotation constants in189OsO4 and187OsO4

In Os16O4, we have to consider the evolution of a single spin (I189Os= 3/2 andI187Os= 1/2) at the center of a tetrahedro
By symmetry considerations, the spin-rotation tensor defined in Eq. (26), must be a scalar. The spin-rotation Hamilton
the simple form which is immediately symmetrized in the molecular group(L)O(3) × Td :

HSR= −hca{I · J}symm= −hca

√
3
[
I (1,A1) × {

D(1,1) × l(0,1)
}(1,0A1)

](0,A1). (40)

From Eq. (29), we deduce directly the expression of the spin-rotation constant which has a nuclear and an e
contribution:

ca = cn
a + ce

a (41)

with

cn
a =OsCn

xx = µ0

4π

gOsµnZOe

2πmOr3
, (42a)

ce
a =OsCe

xx = µ0

4π

3

16π

gOsµnZOe

memOr3

×
∑

p, p �=0

〈0|∑i{(r i × pi )/r3
i }x |p〉〈p|Lx |0〉 + 〈0|Lx |p〉〈p|∑i {(r i × pi )/r3

i }x |0〉
Vp − V0

, (42b)

wheregOs, ZO, mO, r are respectively the gyromagnetic factor of the nucleus Os, the atomic charge and the mass of the
nucleus and the distance O–Os when the nuclei are at their equilibrium. The value of the momentum of inertia at equ
I0 = 8/3mOr2, has been used. With these expressions, the constants are expressed in Hz.

4.1.1. Numerical applications
One can find on the web [13,14] accurate values for these parameters which will permit us to calculate at least th

contribution to the spin-rotation constant. Using the experimental value, we deduce the electronic contribution.

g189Os= 0.4395533, g187Os= 0.12930378, mO = 15.99491463(a.u.)

andrO–Os= 0.171160(10) nm.
One finds:

189cn
a = 340.37(6) Hz, (43a)

189ce
a = −22029.5(33) Hz (43b)

and

187cn
a = 100.035(20) Hz, (44a)

187ce
a = −6479(20) Hz. (44b)

We observe that, in both cases, the electronic contribution is the dominant part as it is well known and it illustrates the
the spin-rotation interaction is mainly due to a breaking of the Born-Oppenheimer interaction. However, the nuclear con
is significant considering the accuracy of the experimental data.

4.2. The spin-vibration constants in189OsO4 and187OsO4

We are essentially concerned by the triply degenerate vibration modeν3 in OsO4. Thus, we shall reduce the vibration
degrees of freedom to this particular mode and from the total vibrational angular momentumG, we build its restriction toν3:

G3 =
∑
σ,σ ′

ζ3σ,3σ ′q3σ p3σ ′ . (45)

According to the adopted orientation of the representations of the point-groupTd recalled in our paper II, the coordinates of t
vectorsζα

3β,3γ
verify:

ζα
3β,3γ = ζ3εαβγ . (46)
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In Eq. (46),α holds forx, y, z coordinates in the molecular frame andβ, γ hold for 1, 2, 3 components of the vibration mo
and for the Levi-Civita tensor there is the correspondence(x, y, z) → (1,2,3). ζ3 is the Coriolis coupling constant and i
expression is:

ζ3 = 1− 3

2
cos2 γ. (47)

γ has been already introduced in paper II. It can be partly derived from the experimental determination ofζ3. Finally, G3 is
simply given by:

Gα
3 = ζ3εαβγ q3βp3γ . (48)

It satisfies the following commutation rules:

[
Gα

3 ,Gβ
3

] = iζ3εαβγ Gγ
3 . (49)

This leads to the definition of thevibrational angular momentuml3 = G3/ζ3 which satisfies the normal commutation rul
of a ‘true’ angular momentum. Now, we can re-consider the spin-vibration Hamiltonian of Eq. (38) when we restrict ourselv
to theν3 mode. In that case, the only vibrational operators which give non-zero matrix elements are proportional to a co
of l3. The third term of Eq. (38) becomes:

HSV =
∑
N

IN · NV · �
3, (50)

where the components of a new spin-vibration tensor are defined by:

NVαβ = εβγ δ
1

2

(
NV3γ,3δ − NV3δ,3γ

)
α
, (51)

α, β, γ , δ designate thex, y, z coordinates of theν3 vibrational mode and are identified with the spatial molecular coordin
This can be re-written as:

NV = ζ3
NC + Nw (52)

whereNC is the spin-rotation tensor of Eq. (28) andNw is a tensor deduced from the set of vectors of Eq. (37) and an equ
similar to Eq. (51).

The symmetry of theν3 mode in OsO4 is F2 as it is the case for theν4 mode. Thus, the symmetry is not sufficient to defi
the vibrational mode. Let us introduce two particular vibrational modes of symmetry F2:

– ν(1) for which the motions of the vibrating nuclei are parallel to each coordinatex, y, z of the molecular frame. Thus, th
corresponding coefficients of the vibration are:




�
Os,α = −
√

4mO

M
�α, (53a)

�
i,α =
√

mOs

4M
�α, (53b)

whereα = x, y, z andi = 1,2,3,4. These indices are associated to the four oxygen nuclei. The set of coefficients are as

to the three componentsν(1)
x , ν(1)

y , ν(1)
z of the modeν(1). They are related to the vibrational motion of the nuclei. As an exam

ν
(1)
x is represented on Fig. 7. One can check easily that the corresponding Coriolis coupling constant is:

ζ (1) = 1. (54)
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Fig. 7. Graphical representation of thex component,

ν
(1)
x , of one possible triply degenerate vibration mode of

OsO4. The associated Coriolis coupling constant would be
exactly 1.

Fig. 8. Graphical representation of thex component,

ν
(−1/2)
x of the triply degenerate vibration orthogonal to

ν(1) . The associated Coriolis coupling constant would
be −1/2. The true eigenmodes of OsO4 are linear
combinations ofν(1) andν(−1/2).

– ν(−1/2), orthogonal to theν(1) mode, for which the motions of the vibrating nuclei are perpendicular to each coordinx,
y, z of the molecular frame. The corresponding coefficients of the vibration are:



�
′
Os,α = 0, (55a)

�
′
1,x

= −�
′
2,x

: 1
2
√

2

(0
1
1

)
; �
′

3,x
= −�
′

4,x
: 1

2
√

2

( 0
1

−1

)
, (55b)

�
′
1,y

= −�
′
4,y

: 1
2
√

2

( 1
0

−1

)
; �
′

2,y
= −�
′

3,y
: 1

2
√

2

(−1
0

−1

)
, (55c)

�
′
1,z

= −�
′
3,z

: 1
2
√

2

( 1
−1
0

)
; �
′

2,z
= −�
′

4,z
: 1

2
√

2

(−1
−1
0

)
. (55d)

These coefficients correspond to nuclei displacements along the edges of the tetrahedron.ν
(−1/2)
x is represented on Fig. 8

The Coriolis coupling constant associated toν(−1/2) is:

ζ (−1/2) = −1

2
(56)

The proper modes of the molecule are linear combinations of these two modes which can be formally defined as:{
ν3 = cosγ ν(−1/2) + sinγ ν(1), (57a)

ν4 = −sinγ ν(−1/2) + cosγ ν(1) (57b)

which is more precisely defined by the set of coefficients:

{ �
3,Os,α = cosγ �
′
Os,α + sinγ �
Os,α, (58a)

�
3,i,α = cosγ �
′
i,α + sinγ �
i,α, (58b)

whereα = x, y, z andi = 1,2,3,4. Similar equations are introduced for theν4 mode.
With these definitions, one retrieves the expression of Eq. (47) forζ3 while ζ4 = 1/2 − ζ3.
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Now, we can give a complete expression of the spin-vibration tensor which reduces to a scalar,A, the spin-vibration constan
in the case of OsO4:

OsVαα = A = ζ3ca + cn
a

(
1

2
cos2 γ +

√
M

2mOs
cosγ sinγ

)
+ 4mO

M

γOsgOsµn

ZOse

(
ω̃3

c

)2
sin2 γ, (59)

cn
a is defined by Eq. (42a). We recognize three contributions:

– ζ3ca , that we will noteAR, comes from the spin-rotation interaction;
– the second one, proportional toZO, is the term due to the magnetic field created by the vibration of the oxygen nucle

can note that this term is sensitive to the relative sign of cosγ and sinγ which is not given by the knowledge ofζ3;
– the last term has two physical origins. The first one is the motional magnetic field due to the electric field of the the

nuclei and induced by the vibration of the osmium nucleus. The corresponding contribution notedAm is obtained from the
third term of Eq. (59) by replacingγOs by 1. The second one is the Thomas precession with a contributionAT which can
be made explicit:

AT = − mO

mOs

2h̄

M

(
ω̃3

c

)2
sin2 γ. (60)

This contribution, proportional to the ratio between the outer nuclei and the central nucleus is, for example, 18 tim
for a molecule like13CD4 which absorbs also in the 10 µm region.

4.2.1. Numerical applications and discussion
We obtain a very rare situation for which the molecular constants involved in the expression of the spin-vibration c

are known. This is true except for the parameterγ . In fact, the value ofζ3 obtained from the rovibrational analysis of theν3
band of OsO4 and Eq. (47) leads to a set of two opposite values (moduloπ ) for γ :

189OsO4 : ζ3 = 0.126927(14) ⇒ γ = ±0.702977(10) modπ, (61a)

187OsO4 : ζ3 = 0.128169(19) ⇒ γ = ±0.703813(13) modπ. (61b)

The sign of cosγ sinγ is undetermined. Thus, two values for the contributionAn are possible:A+
n andA−

n . We summarize
in Table 3 the different contributions of the spin-vibration constant for the two isotopic species of OsO4 considering the two
possibilities and we compare the two possible final valuesA+ andA− with the experimental one.

Table 3
Various contributions to the spin-vibration constant and comparison with the experiment
(in Hz)

189OsO4
187OsO4

AR = −2752.9(5) AR = −817.6(26)
A+

n = 236.40(4) A+
n = 69.50(1)

A−
n = −38.286(7) A−

n = −11.359(2)

Am = 1.154(7) Am = 0.343(2)

AT = −1.063(7) AT = −1.086(7)

A+ = −2516.4(5) A+ = −748.8(26)
A− = −2791.1(5) A− = −829.7(26)
Aexp= −2799(36) Aexp = −781(27)

(a) (b)

Fig. 9. Relative positions of the experimental spin-vibration constant, the constantAR = ζ3ca and the two possible theoretical choicesA+ and
A− : (a) case of189OsO4; (b) case of187OsO4.
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Fig. 10.x components of the two eigenmodes of OsO4 of symmetry F2. The plain arrows correspond toν3 and the dotted arrows toν4.

Fig. 9 displays this comparison. For both isotopic species, it is clear that the main contribution comes fromAR. In the case of
189OsO4, the experimental accuracy permits to reveal the deviation from the approximate relationA = ζ3ca and the observed
value fits with the – sign for the parameterγ , while the other choice is clearly rejected because the corresponding value is
8σ . For187OsO4, the observed value does not give the same agreement. A better agreement with the same sign forγ would be
obtained with a 50 Hz-higher (absolute) value of187ca which would shift in the same way the experimental value of187A . Such
a shift is conceivable if one remembers that the determination of187ca depends on the position of a weak crossover reson
affected by light shifts which could not be measured very satisfactorily.

The knowledge of the sign ofγ determines unambiguously the vibrational mode,ν3 and, thus,ν4. Fig. 10 shows the
componentsν3x andν4x for these modes. It reveals thatν3x essentially stretches the bonds Os–O whileν4x bends the bond
O–Os–O. Thus, we expect a higher frequency forν3 than forν4, close toν1, which is the true stretching Os–O mode. This
exactly the situation since the frequencies ofν1, ν3 andν4 are respectively 974 cm−1, 975 cm−1 and 335 cm−1. This analysis
demonstrates that the magnetic hyperfine structure is indeed a very sensitive probe of the internal dynamics of molec

5. Conclusion

This paper completes the analysis of the hyperfine structure of theν3 band of187OsO4 and189OsO4. The resolution obtained
by ultra-high resolution saturation spectroscopy has yielded an unprecedented experimental accuracy for magnetic
constants such as the spin-rotation and the spin-vibration constants. Our attempt to account for these phenom
constants from first principles appears to be quite satisfactory. The same analysis remains to be done for two other
SF6 and SiF4 for which similar measurements of the magnetic hyperfine structure have been performed in our laborato
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