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Abstract

Osmium tetroxide offers the beautiful example of a central particle, the osmium nucleus, with several possible spin values
(1/2 for 1870s and 32 for 1890s), interacting with the very symmetric and well-defined electromagnetic environment created
by a tetrahedron of spinless oxygen nuclei. Among other nuclear hyperfine interactions, the magnetic field generated by the
vibrations of these oxygen nuclei orientates this central spin. To study specifically this spin-vibration interaction, the magnetic
dipole contributions to the hyperfine structures observed iniHmnd 0f1890504 and187OsO4 have been analyzed in detail.
Besides the spin-rotation constants already deduced in a previous paper, we have obtained the spin-vibratiomcanstant,
small change of the spin-rotation constaay in the upper vibrational level. We have verified the speculated relatien;zc,
at the 1% level {3 is the Coriolis coupling constant,hich multiplies the internal vibtéonal angular momentum to turn it
into a physical angular momentum comparable to the pure rotation angular momentum). Starting from first principles, we have
rederived the expressions of the magnetic dipole constants for any semi-rigid polyatomic molecule. When these are applied
to OsQ, they justify the previous approximate relationship betwgegndc, and give values for the correction terms which
account for the 1% differenc@o cite thisarticle: C. Chardonnet et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Linteraction hyperfine spin-vibration dans la bande v3 de 189%0s0, et de 1870s0O, : un exemple calculable en
spectroscopie moléculaire a haute résolution.e tétroxyde d’ osmium nous offre le bel exemple d’'une molécule pour laquelle
la particule centrale, le noyau d’osmium, dont le spin peut prendre plusieurs valg@rpdar 1870Os et 32 pour 1890s),
interagit avec I'environnement électromagnétique trés symeétrique et trés bien défini, créé par un tétraédre de noyaux d'oxygene
sans spin. Parmi d'autres interactions hyperfines nucléaires, le champ magnétique engendré par le mouvement de vibration
de ces noyaux d’oxygéne contribue a orienter le spin central. Pour étudier spécifiquement cette interaction spin-vibration,
les contributions dipolaires magnétiques aux structures hyperfines observées dans la bande de ngltatidfOsQy et
1870sQy ont été analysées en détail. En plus des constantes de spin-retatitéja déduites dans un article antérieur, nous
avons obtenu pour chaque espéce isotopique la constante de spin-vidatana valeur d'une petite variatioft, de la
constante de spin-rotation dans I'état vibrationnel supérieur. Nous avons Vérifié la relation conjéctutée, au niveau de
1% (¢3 est la constante de couplage de Coriolis, qui multiplie le mdraegulaire vibrdonnel interne pour en faire un moment
angulaire physique comparable au moment angulaire de rotation pure). En partant des premiers principes, nous avons recalculé
les expressions des constantes dipolaires magnétiques pour toute molécule polyatomique semi-rigide. Quand ces expressions
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sont appliquées a la molécule Og@lles justifient la relation approchée qui précéde eAted ¢, et fournissent des valeurs
pour les termes de correction qui rendent compte de la différence déPdufrbciter cet article: C. Chardonnet et al., C. R.
Physique 5 (2004).
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1. Introduction

Thanks to non-linear spectroscopic methods (saturation spectroscopy) invented 35 years ago [1], ultra-high resolution
molecular spectroscopy is now currently performed with a linewidth of about 1 kHz. This corresponds to a resolving power
~ 3 x 1019 in the 8-12 pm spectral region, in which our spectromefgerates in Villetaneuse [2—4]. This resolution is
perfectly well-adapted to the observation of the magnetic hyperfine interactions in the rovibrational spectrum of most molecules.
Although these interaains are very tiny, they constitute a sensitivel@ of the internal dynaros of the molecule. The
resolution and the accuracy achieved in the measurement of these interactions open the possibility of a stringent comparison
between experiment and theory. This paper follows two earlier ones which present the experimental observations of hyperfine
structures if870sQ, and18%0sQy and the analysis of these interactions. This third paper demonstrates a remarkable agreement
between a simple theoretical model and our experimental observations.

In a first paper [5], referred to as paper |, we have presented a general introduction to the hyperfine problembarie
of 18%0sQy and 1870sQy. The relationships between thgperimental splitihngs and the hyperfine constants (spin-rotation,
spin-vibration and quadrupolar coupling constants in both rovibrational levels) have been established. The observation of
crossover resonances in saturated absorption gave rise to an independent determination of the hyperfine constants in each
vibrational level. As an illustration, we have derived the spin-rotation constants and obt&fagd= —21.6891(33) kHz and
187., = —6.37920) kHz.

In a second paper [6], referred to as paper |1, we have focused our attention on the electric quadrupole intet&2@s@in
Although, by symmetry, this molecule should not present any quadrupolar structure if it behaved as a rigid rotor, we were able to
observe two main contributions, due to the centrifugal distortion and to the vibration and also a weaker one, due to the Coriolis
forces. In order to describe correctly the observed structures, we have developed a systematic method for the perturbative
treatment of the quadrupolargilem, valid for any semi-rigid molecule. Tinethe Hamiltonian was symmetrized using the
algebra of the symmetry group of the molecufe,O(3) x T} in order to calculate the matrix elements. The whole procedure
enabled us to establish a connection between the quadrupolar constants which are deduced from experiment, and a set of
molecular constants, some of which are already known from other spectroscopic works, some others are unknown such as a
set of force constants which depend on the shape of the molecular potential. Unfortunately, the number of unknown molecular
constants involved in the description of the ‘experimental’ quadrupolar constants was too high and prevented us from any
stringent test of the validity of our description of the quadrupolar problem.

In the present paper, we follow the same general idea with the magnetic dipolar probiéﬁ@'m; and 1870sQy. In
Section 2, we derive the magnetic dipole constants in the upper vibrational state from the experimental data since ground-state
spin-rotation constants were already obtained in paper I. In Section 3, starting from first principles, we recall the expression
of the magnetic dipolar Hamiltonian. We obtain it by quantization of the classical Hamiltonian which can be derived for any
particle in classical eleadynamics. Then, we obtain the greetic dipole Hamiltonian for angemi-rigid molecule and we
express the magnetic constants in terms of elementary molecular constants. Some simplifications of the Hamiltonian based on
physical considerations enable us to reduce the number of unknown terms in these expressions and a real comparison between
the experimental constants and the values deduced from the theoretical calculations is possible by contrast with the quadrupolar
problem. In Section 4, we apply this study to the case ofitheand of18%0sQ, and1870sQy. For both molecules, we obtain
a relationA = ¢3¢, + w, wherew is completely calculable except for the unknown sign of a parameter which distinguishes
between the two §£modes of vibrationyz andvy. It is remarkable that the experiment lifts this ambiguity in favor of the mode
which is much more likely to be the high frequency made

2. Determination of the magnetic dipole constants in the upper vibrational level 0#8%0s0, and 1870s0,

We have shown in paper | that the hyperfine structures in4tteand of1870s'80, and of18%0s60, appear respectively
as two and four main lines identified b= F — J = F’ — J’ whereF = J + 1 is the total angular momentuni, F andJ’, F’
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Fig. 1. Spectrum of the P(65ﬁ’3(+) line of 187OsO4, located at-15.260 MHz from the P(18) laser line of the natural &Qhe half-width

at half-maximum (HWHM) is 2.77 kHz. The magnetic doublet associated to the #pinf&87Os is apparent. The rovistional identification
has required mixing of two states due to tendadriteractions. This has no influence on the hyperfinteractions which are essentially scalar.
The natural mixture of Osgused here contains 1.64% B¥7OsQy. 2seg¢point. Uncertainty of the splitting: 50 Hz.
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Fig. 2. Spectrum of the R(67)% () line of 1870sQy, located at-1.846 MHz from the R(22) laser line of the natural GBIWHM = 1.88 kHz.
The better signal-to-noise ratio is due to the enriched (at 99%) samp¥@§0y. 1 segpoint. Uncertainty of the splitting: 13 Hz.

are the quantum numbers in the ground and upper vibrational states, respectively. The'8fsa$/ = 1/2 and, forl8%0s,

I = 3/2. We will keep consistent notations with those introduge&ection Ill.1 of paper |. The transition frequency of the

line identified byX is notedAE(X). Figs. 1-4 give a few examples of hyperfine structures of these two isotopic species. In
the case of8%0sQy, the precision on the relae intensities of the hyperfe components, which are mainly proportional to the
Zeeman degeneracyF2+ 1, was high enough to enable a direct identification of each of these. Egs. (10) and (11a) of paper I,
valid respectively for870sQy and for'890sQy, can be re-written in the form:
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Fig. 3. Spectrum of the P(7ON(—) line of 18%0sQy, located at+149262 MHz from the P(20) laser line of the natural £0

HWHM = 2.33 kHz. The natural mixture of OgQused here contains 16.1%361'90504. 1 seg¢point. Uncertainties of the splittings: from 13
to 20 Hz.
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Fig. 4. Spectrum of the R(64)}(—) line of 18%sQy, located at—146017 MHz from the R(20) laser line of the natural O
HWHM = 3.05 kHz. Natural mixture of Osf 1 se¢point. Uncertainty of the splittings: 19 Hz.

for 1870sQy,
1 1 2J +1
AE<§>—AE(—E>=— 5 Acg —caAJ, 1)
for 1890s0y,

[u(%) _ AE(— g)] _ [AE(%) _ AE( - %)] — )+ DAca — 2cair, @
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Table 1
List of experimental values fokc, : case of-870sQy
187050y,
Line label Acg (HZ)
P(65) A5 3(+) —6.87(86)
P(58)A1(+) —8.40(57)
P(38)A2(-) —15.23(61)
RGBOAL(+) 30.73(67)
REBOAL(-) 30.67(81)
R(49A2(-) 20.95(57)
R(49A2(+) 20.87(56)
R(55A(+) 17.82(81)
R(6DA(-) 13.93(35)
R7HA(+) 15.7(13)
RT7HA(—) 17.3(15)
R(80AL(+) 14.38(79)
R(80)AL(—) 15.99(81)
Table 2
List of experimental values fatc, : case of-8%0sQy
189OSQ1
Line label Acq (H2)
P(70)A%(—) —2552(18)
P(63)A1(-) —31.59(25)
P(56)A2(+) ~3191(23
P49 A3(-) —34.94(21)
P49 A3(+) ~3471(2))
R26)A(+) 121.88(66)
R(26)A%(-) 12166(61)
R(45A%(—) 77.65(29)
RGDAY(+H)(@)? 67.90(48)
RGDAY(H(B)? 6847(47)
R(64)AT(+) 62.29(22)
R(64)AL(—) 62.02(21)
R(649)A2(+) 61.46(20)
R(76)A%(+) 53.78(38)
whereAc, is given by:
Acazaca—AAJ(J+J/+1)+2:<SC“+AQ(J, J. (3)

2J/(J +1)
The left-hand sides of Egs. (1) and (2ydatve splittings between hypente components which are measd experimentally.
Since the spin-rotation constatt&, and'87c, have been already determined, we obtain experimental datecfomhich are
reported in Tables 1 and 2, corresponding to the two isotopic species. Eq. (3) gives the basis of a linear fit to determine the two
hyperfine constant&, and A for each isotopic species. The results of these linear fits are displayed in Figs. 5 and 6. We obtain:
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Fig. 5. Linear regression using Egs. (1) and (3) for the determinafitrespin-vibration constant and the change of the spin-rotation constant
between therz = 0 and thev3 = 1 state in the case d7OsQy. The error bars are the experimental uncertainties.
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Fig. 6. linear regression as for Fig. 1, using Egs. (2) and (3) in the cd$8@&0y.

for 1870sQy,

§cqg =5.13(36) Hz,
A = —78127) Hz:
for 18%0sQy,

Scqg = 18.34(76) Hz,
A =-279936) Hz.

Let us recall the values of the Coriolis coupling constasgtfor both isotopic species [7]:

187¢5 — 0.12816519),
189, = 0.12692714)

so that we can verify that:
for 1870sQy,

= 0.955(35);

{3¢a

(42)
(4b)

(52)
(5b)

(6a)
(6b)

@)
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for 18%0sQy,

=1.017(13). ®
3Ca
This means thatAr = ¢3¢,, Which multiplies the rotational part of the spin-vibration interaction, represents the most
important contribution to the spin-vibration constant. The remainder of this paper is devoted to the analysis of these hyperfine
constants in order to give a physical explanation of such a remarkable relation.

3. Magnetic dipole Hamiltonian from first principles

The purpose of this part is t@call the physical origin of the agnetic dipole Hamiltonian in nkecules. For this purpose,
we start with a classical approach and derive a simplified classical Hamiltonian for molecules, which is then quantized. The
reader will find more general derivations of a full molecular Hamiltonian in the literature [8,9].

3.1. Derivation of the spin-orbit Hamiltonian

We consider a particle of spmand of magnetic moment parallel tos. In its proper frame, the particle probes a magnetic
field, B, and the classical non-relativistic Hamiltonian is:

Hnonrrel. = —p - B. ©)

There is an axial 4-vectof, which reduces t& = (0, s) in the proper frame of the particle (Thomas—Pauli-Lubanski). If
the particle moves at a velocityin the laboratory frame, the relativistic Hamiltonian can be written as [10]:

1
Hye|, :_;IL'B/'F“’T'S (10)

wherey = (1 — v2/c2)~1/2, B is the magnetic field in the proper frame of the particle andis the Thomas precession
vector,wT = —()/2/()/ + 1))(1/(c2))v x dv/dt. The first term is the interaction energy between the dipole and the magnetic
field, the factor 1y is the time dilatation factor in the laboratory frame. The second term has a purely kinematic origin and is a
consequence of the fact that the product of two Lorentz transformations is equivalent to a Lorentz transformation and a spatial
rotation when the velocity changes its direction.

Let us suppose that the particle has a chargend is submitted to the Lorentz force created by an electric Eetohd a
magnetic field; one can show that Eq. (10) takes the following form:

-1 vV _V vxE
Hrel':_,t.[(1_ﬂV_)B_LG_ﬂ)_.B__(l_Lﬁ) x ] (11)
mu y y+1 muj)c ¢ y+1lmu/) 2

This expression is valid whatever the valuey B andE. If we assume that the particle is in interaction with the molecular
fields and thav « ¢, this Hamiltonian takes a simplified expression:

qg s\VxE vxE
Hrel.=—ﬂ»‘|:B—<1—E;) 2 ]=—ﬂ‘|:B—ViC—2]- (12)

The Thomas precession appears only as a correction fagtotharacteristic to the particle in front of the motional
magnetic field that we will note, for the electron angry for a nucleus N. Expressed in terms of the gyromagnetic fagtors
andgy, and the atomic chargéy, the mass of the nucleus and the proten; andm :

1

yezl——%i, (13a)
8
Z

yy=1— ZN"p (13b)
ENMN

In particular, we havgisgng = 0.072 andyis7og = —2.2. B andE are the molecular fields created by the electrons and the
nuclei of the molecule:

do ' —To
EM =Y Eq= —, (142)
; T e hmeg | —rg 3

1 po By - (r —Tq) Ky 8r
B(r) = By = — E — 0 —Tyg)— — —_ S(r—r . 14b
v ; ’ ;czvax a+4ﬂ< e T T e (140)
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We can now write a spin-orbit Hamiltonian:

1oe ri—r; Hoe Zg(ri —1g)
Hso = — (V= ypevy) x ——L Vi — yeV;) x —2—L 22
SO. = 4 lzj:ﬂl |:( = VeVi) X =t |3] iX:ILl |:( K — YeVi) X TR
i£] ’
uoe 'N—Tj Hoe Zg('N —Tk)
ZILN [(V] YNVN) X 7]3] ==Y uy- [(VK —¥YNVN) X ——=— |, (19)
Iry —r1;l ar X Iry =Tkl
N#K

where the indiceg and j refer to the electrons and the indicAsand K to the nuclei N and K. This Hamiltonian can be
quantized and symmetrized:

o= <o s [ (Rt < S oo T [ (B )« 20

iK
l#/
II; oy Ryi

+ Un ZgN|N‘ [(m_] —VNm—> x T]]

N e N RNj

Tk Iy ZgkRnk

e X ety [ () 2]} a0

N,K K N RNK symm

N#K

We have introduced the operatas | y,} Ry, I, for the electronic spins, the nuclear spins, the position-ve@gp =
Ry — Rp) and the canonical momentum in the laboratory frame for the patticlenis last operator is related to the usual
momentum of the particle by the relatidh, = Py — g0 Ax(Ry) WhereA, (Ry) is the potential-vector created by the other
particles (electrons- nuclei) at the position of the particte. Now, in order to be able to calculate the various contributions
of this Hamiltonian, we need to introduce the relevant coordinates expressed in the molecular frame. Since the procedure is
canonical, we shall just give the result. Tharhiltonian splits into two parts, the nucleairsprbit and the elecbnic spn-orbit
terms:

noe /2 ﬁm ZN
HR, =21 — Iy -1
SO. = 4 { HMn Z ENIN |:|:< — —

N.K
N#K
0 0 1N ZK'NK | 172
— (g —vnry) x ( -N) A
NK
12| [ Pi EN 0 -1 INi |, n—1/2
+un ) gnln-1" [[-—Vzv(—f’x—f;vx(' 'N)>]X— I ; (17a)
NXE Me VN r13w symm
p. r::
HEo = { g1p ZS: [(——ye l)xl—?f]
me rii
l#]
¢ p Zgr; _
2 K\ n—1 i K'iK |;n-1/2
+eugy 51" [( P—r% x (1”71.N) - )x—:|1 } . (17b)
i,ZK VMK K me VE’K symm

A corresponds to a normal vibrational mode and a sum overrtexiis assumed. Most of thew quantitis introduced here
correspond to standard notatiod§1/2 involves the determinant of the matii% and comes from the Jacobian related to the
change of variables. It does not commute with The Hamiltonian involving the electronic spins cancels to first order when
the total electronic spin is zero. Since we are only interested in the hyperfine terms we shall consider only the nuclear spin-orbit
Hamiltonian which can be rewritten as a sum of 5 terms:

HY o, =H3g+ Hgg+ HEy + HEy +HEG, (18)

with the following expressions:

1 Note that, for exampley y = gy unl y implies that, as for the other spirlgy is dimensionless and expressed in unité of
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_ Zkr _
SR_ HV“” Z enly //l/2|:[( — NT ) (l” 1-(J—G)h)]x%:|l” 1/2} 7 (19)
rNK symm
N;éK

HoMne - INi |-

HeR= Z" {Zg Iy - 1”1/2[[;/ rQ x (1" 1.(J—G)h)]x%]1” 1/2} , (20)
'Ni symm

notne 1/2 k. ZN ZKUNK |,n—1/2
HR,, = — { gyl 1" [[( - ) ]x "= , (21)
SV 4 }%1:( Jm 4/ r]%’K symm

N#K

HoMne 71/2 e, 'Ni | ,n—1/2
HEy = — { gnin -1 [VN—PAX_ 1 : (22)
> ad NZz VMmN r/?i/i symm

HQMne Pi XTni XrN - ZKINK
HiG, = 4"{2 2 T — ZgNN [ (% —vnrR) x (1" L)) x =5 ]

Mer Nl "Nk
N;ﬁK
_ I'Ni
—ZgNIN«[[er?VX(IU 1¢)]le]} . (23)
i.N Fyi4J)symm

The four first terms of 'g.o. will give a contribution to first order to the spin-rotation Hamiltonians (index SR) of nuclear

(n) or electronic (e) origin and to the spin-vibration Hamiltonians (index SV). On can notE'that (J — G)# representg,in

alzg electronic state, the operator associated with nuclear rotation. Finally, the last term gives a non-zero contribution only by
breaking the Born—Oppenheimer approximation. In order to obtain a contribution to the spin-rotation interaction, we need to
couple the term to an orbital term linear wilh- G. The only possible term is:

HOrb ((J—G)-u~L+L-u-(J—G))h. (24)

It is noticeable that there is no other orbital term which can generate a second-order contribution to the spin-vibration
interaction except this one which depends@rThe second-order spin-rotation term is, thus, given by:
H@ _ _ HoHne Zgzvlzv (OIL’y IP)(PILIO) -+ (pIL'y I0)(OIL |p) -
Vo —Vo

SR~ 4drm,

Pa- G)h} (25)

N symm

whereL’N_z Zi(rm_ X pi)/rz?(,l.. _This Ias_t term completes Egs. (21)—(24) which will give the dominant contributions to the
spin-rotation and spin-vibration interactions.

3.2. The spin-rotation tensor

The spin-rotation tensdfC is defined as:

HSRz—:—ZLZh(I NC.3-6)+0-6)-Nc-1y) —h{ZIN Nc. Q- G)} . (26)
N

symm

This tensor is a constant (expressed in Hz). It will be obtained by considering the nuclei at their equilibrium position in Egs.
(19), (20) and (25). From Egs. (19), (20), the spin-orbit Hamiltonian to first order can be written as:

_ Zgr9
Hg;_{‘;;';;e > gNIN[[r% x((1°) 1-(J—G>)]x%]
¢ NK "Nk
N#K
1 _
- S Sentn [t 0900
N
[ 2zl o) e
K 47T€0ro 3 47750r1?/,~3 symm
K#N

2 J andG are dimensionless and expressed in units.of
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where the expression which appears in the last brackets has a simple physical meaning. It represents the Comﬁ@alﬁ field

at the nucleusV created by the other particles of the molecule. The corresponding ﬁé&%t = ZNeEgouI.' applied on
this nucleus is responsible for its rotation as the molecule is considered as a rigid rotor. A classical picture is given by the
fundamental law of the dynamics:

Fgout =mye X (w X r(l)v)’

where » represents the angular velocity expressed(Iy—2 . (J — G). Thus, it turns out that the corresponding term in

the Hamiltonian can be interpreted as a higher-order teri%T1 . (J— G) and can be neglected. This is confirmed by

a simple calculation of order of magnitude: the ratio between the second and the first teréhcii; idf the order of:

A eomywir3/(Zy Zk e?). Sincew ~ Jh/(Mr2), whereM is the molecular mass, realistic numerical applications give a ratio

of Ay 12/(Aﬁ10I ZNZg) x 1074 (Ay and A are the atomic masses df and the whole molecule, respectively) which is

very small if / < 100, whatever the molecule is. Neglecting this term has two consequences: first, the Thomas precession term
disappears, i.e., the acceleration of the nuclei due to the rotation induces a negligible spin precession compared to that due to
the magnetic field created by the moving charges in the magsecond, the first-order sprotation Hamiltonian depends

only on the nuclear coordinates and is completely calculable. Thus, the expression of the spin-rotation tensor is given by:

NC — Ncn + N(:e7 (28)

where the nuclear and electronic spin-rotation tensors are defined by:

0 .0 0,0
N~n _ Momne "ka"NKp ~ Tk TNkSap 1
Cop="4, 8N > ZK( e o (29a)
K, K#N "Nk B8
HoMne (OILQ, IP)(pILgI0) + (OILgp)(pILY 0) 1
NCop="7.sn 2 b — (29b)
p. p#0 P70 melgg

where the superscript 0 ib’Na indicates that the nucleu€ is taken at its equilibrium position.
3.3. The spin-vibration tensor

The spin-vibration interaction comes from the coupling between the nuclear spins and the angular momentum induced by
the vibration. The general form of the associated Hamiltonian is:

1 N N
HSVZEZ“\]'Z( Vipa+ pa V}L). (30)
N X
We develop this expression to second ordey,irand p;,:
1
Hsy = ZIN . [ZNV,\p,\ + 5 ZNW/\M(‘D»PM +pugi) + ] (31)
N A Py

This Hamiltonian is actually the sum 0@;} and I—§V given by Egs. (21) and (22) and it can be re-written as:

MOMné’ (ks ZKTNK
Hsy=— { gnln - [ X 7}
Z \/_K 3
N;éK

"Nk

N, ZKfNK I Ni
— ) VYNE&NIN- [Px X (
Do [ e (T (4T

K.K#N rNK

i)/ &

As in the case of the spin-rotation interaction, the second contribution involves terms proportional to the Coulomb forces exerted
on the nucleiv. These Coulomb forces are responsible for the rotation and the vibration of the nuclei. If we neglect the rotation
here, which can only contribute to higher-order terms, we see that the Coulomb force derives from the molecular potential
which can be developed versus the normal coordinates:

V=W+s3 thqk +he Y Kouwdaduqy +- (33)
A, v
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where the vibrational pulsatiosm is introduced and is related to the ‘vibrational frequency’ — commonly expressed-ih cm
and introduced in paper Il — by, = 27 cw, . Thus the force obtained at the first ordegjnis:

NE= Vi V==Y hougaVeygs ==Y \Jmyhoiyigs (34)
A A

and the new expression of the spin-vibration Hamiltonian is:

Holne lky  ZKTNK
om0 > iy, i Pt
A ];( mg 3 symm

. "Nk
N#K
hip YN i 7
+ eczn Z 8NN > wfiny < Enpaapu |- (35)
N N A

where the conjugate momentuR), has been replaced by the dimensionless ppalefined by: P, = /i@, p,. A simple
development versus the normal coordinates leads to the expressions of the%msmndem:

7 Zkr9
NVA:_MOLanNe ) [ g K 2K N3Ki|’ (36)
Tk KeN VK g

- - - - 0 -
h e Z l V4 V4 V4 r L
Ny, = HOMREN Z K [ N K 3<< N KA )J%K) NK ] L Lku

3 - - - 2 W
Vb4 X, K#NrIC\)IK Jmy  Jmg Jmy  Jmg r}%K JMEK
hunyNEN 27 7
+ ————— LNy XNy 37
Znec? TN b (37)

In a given vibrational level, the contribution of the first term in Eq. (31) is zero since the opgjai®off-diagonal. The first
non-zero contribution comes from the second term whose physics is expressed by Eq. (37) of th’éﬂggpsoThe first line
comes from the usual interaction between the molecular magnetic field and the nuclear spin while the second line represents
the motional terms: it includes in particular the Thomas precession. It is easy to estimate the relative contribution of these
two terms as we did in the case of the spin-rotation interaction: the ratio is of the ordEE@Wwfr3/(ZNZKe2),
an expression very similar to that obtained in the case of the rotation except that the rotational frequency is replaced by the
vibrational frequency. In the case of a vibration in the 10 pm region, one finds a ratio of the oxdanof x /(Z Z k) which
is typically between 0.1 and 1. This means that the motional terms cannot be neglected when the vibration is considered.

3.4. New definition of the spin-vibration tensor

Because the molecular rotation is better represented by the angular monkert@nwe have expressed the spin-rotation
Hamiltonian with this quantity wich appears naturally. However, for an anédysf the hyperfine constants from experimental
data, it is preferable to assemble ternasihg the same signature. Thus, we introgltize spin-vibratiofotation Hamiltonian
with the following development:

HSVR=—{ZIN-NC~J}
N

This expression preserves the spin-rotation tensor as well as the fansaie have to define a new spin-vibration tensor by
the relation:

1
+> Iy [ZNVAPA] +> Iy [ZNV,\ME(tI,\pu+p;L¢I,\)] SR (38)
N A »

symm N

M =My +MC g5, (39)

and we will keep in mind that the second part of this tensor has a rotational origin.

This spin-vibration interaction has been introduced by Uehara and Shimoda [11] and first observed in the hyperfine spectrum
of SKg in our laboratory [12].

The treatment presented here is applicable to any sendipigiyatomic molecule. We will now consider the specific case
of Os(y.
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4. Magnetic dipole constants in 0860,
4.1. The spin-rotation constants #§%0sQy and1870s0y

In 0st80,, we have to consider the evolution of a single spiRdys = 3/2 andl1s7q5= 1/2) at the center of a tetrahedron.
By symmetry considerations, the spin-rotation tensor defined in Eq. (26), must be a scalar. The spin-rotation Hamiltonian takes
the simple form which is immediately symmetrized in the molecular gf&d®(3) x 7;:

Hsr= —hcall - Jsymm= —hca«/é[l (1,A1) o {D(l,l) « 1(0,1)}(1,0A1)](0,A1). (40)

From Eg. (29), we deduce directly the expression of the spin-rotation constant which has a nuclear and an electronic
contribution:

ca:cg—}-cs (41)
with
n_0s,n 1o 8osin Zoe
=5ch o> 42a
€a A 2nmor3 (42a)
¢ _Osce _ Mo 3 goginZoe
“ 4 161 memor3
5 (01 32 {(ri x p)/ el P)(PILx10) + (OLx | p)(pl 323 {(r; x Py)/rP)x10) (42b)
p, p#0 Vp—Vo

wheregos, Zo, mo, r are respectively the gyromagnetic factor of the nucleus Os, the atomic charge and the mass of the oxygen
nucleus and the distance O—Os when the nuclei are at their equilibrium. The value of the momentum of inertia at equilibrium,
0= 8/3mor2, has been used. With these expressions, the constants are expressed in Hz.

4.1.1. Numerical applications
One can find on the web [13,14] accurate values for these parameters which will permit us to calculate at least the nuclear
contribution to the spin-rotation constant. Using the experimental value, we deduce the electronic contribution.

g89ps = 0.4395533  giazns=0.12930378 mo = 15.99491468a.u.)
andro_os=0.17116410) nm.

One finds:
189N — 34037(6) Hz, (43a)
1898 — _220295(33) Hz (43b)
and
1871 — 100035(20) Hz, (44a)
1872 — —647920) Hz. (44b)

We observe that, in both cases, the electronic contribution is the dominant part as it is well known and it illustrates the fact that
the spin-rotation interaction is mainly due to a breaking of the Born-Oppenheimer interaction. However, the nuclear contribution
is significant considering the accuracy of the experimental data.

4.2. The spin-vibration constants #%0sQ, and1870sQy

We are essentially concerned by the triply degenerate vibration mpde OsQy. Thus, we shall reduce the vibrational
degrees of freedom to this particular mode and from the total vibrational angular mom@&ntuenbuild its restriction ta3:

G3=Y  $305,30'430 P30’- (45)
o,0’
According to the adopted orientation of the representations of the point-@porgralled in our paper I, the coordinates of the
vectors;%‘ﬁ 3y verify:

f%ﬁ,gy = {3€aBy - (46)
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In Eq. (46),« holds forx, y, z coordinates in the molecular frame afdy hold for 1, 2, 3 components of the vibration mode
and for the Levi-Civita tensor there is the correspondefxce, z) — (1, 2, 3). ¢3 is the Coriolis coupling constant and its
expression is:

3=1— gcoszy. 47)

y has been already introduced in paper Il. It can be partly derived from the experimental determinagoRiodlly, G3 is
simply given by:

G3 = {388y 43813y - (48)

It satisfies the following commutation rules:

(G4 G5] = itsea, G} (49)

This leads to the definition of thebrational aagular momentuniz = G3/¢3 which satisfies the normal commutation rules
of a ‘true’ angular momentum. Now, we canrreensider the spin-vibration Hamiltaam of Eq. (38) when we restrict ourselves
to thevz mode. In that case, the only vibrational operators which give non-zero matrix elements are proportional to a component
of 13. The third term of Eq. (38) becomes:

Hev=) In "V f3, (50)
N

where the components of a new spin-vibration tensor are defined by:

1
Mg =epys > (M3y.35 — MV3zs.3y),, (51)

a, B, y, 8 designate the, y, z coordinates of thes vibrational mode and are identified with the spatial molecular coordinates.
This can be re-written as:

Ny = g3NVe + Mw (52)

whereC is the spin-rotation tensor of Eq. (28) affd is a tensor deduced from the set of vectors of Eq. (37) and an equation
similar to Eq. (51).

The symmetry of thes mode in OsQ is F» as it is the case for they mode. Thus, the symmetry is not sufficient to define
the vibrational mode. Let us introduce two particular vibrational modes of symmetry F

— v for which the motions of the vibrating nuclei are parallel to each coordinate z of the molecular frame. Thus, the
corresponding coefficients of the vibration are:

- 4mo .
l =—,/—q, 53a
Osa M ( )

;. _ [mos,
=205, (530)

wherea = x, y,z andi = 1, 2, 3, 4. These indices are associated to the four oxygen nuclei. The set of coefficients are associated
to the three componemél), v)(,l), u§1> of the modev™ . They are related to the vibrational motion of the nuclei. As an example,

vfcl) is represented on Fig. 7. One can check easily that the corresponding Coriolis coupling constant is:

(D1 (54)
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Fig. 7. Graphical representation of the component, Fig. 8. Graphical representation of thecomponent,
v)El), of one possible triply degenerate vibration mode of u,E_l/z) of the triply degenerate vibration orthogonal to
OsQy. The associated Coriolis coupling constant would be v, The associated Coriolis coupling constant would
exactly 1. be —1/2. The true eigenmodes of OgCare linear

combinations ob® andv(-1/2),

— v(=Y/2 orthogonal to the™ mode, for which the motions of the vibrating nuclei are perpendicular to each coorginate
y, z of the molecular frame. The corresponding coefficients of the vibration are:

losa =0. (55a)

. . L 0 . . L 0

eix = _Z/Z,x . 2_\/5 (i) 5 6/3,)6 = _eil,x . 2_\/5 ( 11> N (55b)
1 ! 1 -1

o gy 1 Ry | U

el,y - Z4,y " 242 (_01) ’ eZ,y - Z3,)7 " 242 (_01) ’ (55¢)

1 -1
7 .1 Ry A |

These coefficients correspond to nuclei displacements along the edges of the tetra&é&(&his represented on Fig. 8.
The Coriolis coupling constant associated to1/2 is:

_ 1
(Y =3 (56)

The proper modes of the molecule are linear combamatiof these two modes which can be formally defined as:

v3 = cosy v~ 4 sinyvD), (57a)
vp=— Sinyv<*1/2) + cosyr® (57b)

which is more precisely defined by the set of coefficients:
3080 = COSyZ’OSa +siny£ogq: (58a)
l3,i,q =COSy L, , +sinyl; 4. (58b)

wherea = x, y, z andi = 1, 2, 3, 4. Similar equations are introduced for themode.
With these definitions, one retrieves the expression of Eq. (4Zgfamhile ¢4 =1/2 — ¢3.
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Now, we can give a complete expression of the spin-vibration tensor which reduces to assdakasgpin-vibration constant,
in the case of Os@

~ N2
1 M . 4dm w .
OS\/u = A ={3¢q +c2<§ coszy + | g cosy smy) + ﬁ%(f) smzy, (59)
S

cllis defined by Eq. (42a). We recognize three contributions:

— {3¢q, that we will noteAR, comes from the spin-rotation interaction;

— the second one, proportional gy, is the term due to the magnetic field created by the vibration of the oxygen nuclei. One
can note that this term is sensitive to the relative sign of,casd siny which is not given by the knowledge ¢f;

— the last term has two physical origins. The first one is the motional magnetic field due to the electric field of the the oxygen
nuclei and induced by the vibration of the osmium nucleus. The corresponding contributiompptedbtained from the
third term of Eq. (59) by replacingos by 1. The second one is the Thomas precession with a contribatiomhich can
be made explicit:

2h (@3\? .
e 102 (B, ©
mOsM C

This contribution, proportional to the ratio between the outer nuclei and the central nucleus is, for example, 18 times larger
for a molecule like'3CD,4 which absorbs also in the 10 um region.

4.2.1. Numerical applications and discussion

We obtain a very rare situation for which the molecular constants involved in the expression of the spin-vibration constant
are known. This is true except for the parametetn fact, the value otz obtained from the rovibrational analysis of thg
band of OsQ and Eq. (47) leads to a set of two opposite values (modifor y:

18050y : 13 =0.12692714) = y = +0.70297710) modr, (61a)
18050y : 13 =0.12816919 = y = +0.70381313) mod . (61b)

The sign of cog siny is undetermined. Thus, two values for the contributipnare possibleA;” and A, . We summarize
in Table 3 the different contributions of the spin-vibration constant for the two isotopic species gfd@a€idering the two
possibilities and we compare the two possible final valiésand A~ with the experimental one.

Table 3
Various contributions to the spin-vibraticconstant and comparison with the experiment
(in Hz)
189050, 18705
AR = —27529(5) AR = —817.6(26)
Al =23640(4) A} =6950(1)
A, = —38.2867) Ay =—113592)
Am = 1L1547) Am =0.3432)
AT =-1.0637) AT =—-1.086(7)
AT = —25164(5) AT = —7488(26)
A~ =—-27911(5) A~ = —8297(26)
Aexp= —279936) Aexp=—781(27)
1897 - 1897 1897+ 187A- 187A 187 A+
R
- 50 Hz Voo SRR,
—> ‘
| | | | AT,
189 )& 187 1&
exp exp
(@ (b)

Fig. 9. Relative positions of the experimeahspin-vibration constant, the constaty = ¢3¢, and the two possible theoretical choic&$ and
A~: (a) case oft8%sQy; (b) case of870s0Qy.
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Fig. 10.x components of the two eigenmodes of Qg8 symmetry k. The plain arrows correspond tg and the dotted arrows te.

Fig. 9 displays this comparison. For both isotopic species, it is clear that the main contribution comagfriorthe case of
189050y, the experimental accuracy permits to reveal the deviation from the approximate relatiggc, and the observed
value fits with the — sign for the parameterwhile the other choice is clearly rejected because the corresponding value is off by
8. For187OsO4, the observed value does not give the same agreement. A better agreement with the same siguilibe
obtained with a 50 Hz-higher (absolute) valué'8t, which would shift in the same way the experimental valuéd . Such
a shift is conceivable if one remembers that the determinatidfi’'ef depends on the position of a weak crossover resonance
affected by light shifts which could not be measured very satisfactorily.

The knowledge of the sign of determines unambiguously the vibrational modg,and, thus,v4. Fig. 10 shows the
component3, andvg, for these modes. It reveals thaf, essentially stretches the bonds Os—O whije bends the bonds
0-0s-0. Thus, we expect a higher frequencyvpthan forvg, close tovq, which is the true stretching Os—O mode. This is
exactly the situation since the frequenciespfvs andv, are respectively 974 cnt, 975 cn ! and 335 cntl. This analysis
demonstrates that the magnetic hyperfine structure is indeed a very sensitive probe of the internal dynamics of molecules.

5. Conclusion

This paper completes the analysis of the hyperfine structure ofthand of!8’0sQ, and18%0sQy. The resolution obtained
by ultra-high resolution saturation spectroscopy has yielded an unprecedented experimental accuracy for magnetic hyperfine
constants such as the spin-rotation and the spin-vibration constants. Our attempt to account for these phenomenological
constants from first principles appears to be quite satisfactory. The same analysis remains to be done for two other molecules
Sk and SiR for which similar measurements of the magnetic hyperfine structure have been performed in our laboratory.
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